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KineDex

Figure 1: We present KineDex, a framework for collecting tactile-enriched demonstrations via
kinesthetic teaching and training tactile-informed visuomotor policies for dexterous manipulation.

Abstract: Collecting demonstrations enriched with fine-grained tactile informa-
tion is critical for dexterous manipulation, particularly in contact-rich tasks that
require precise force control and physical interaction. While prior works primarily
focus on teleoperation or video-based retargeting, they often suffer from kinematic
mismatches and the absence of real-time tactile feedback, hindering the acquisi-
tion of high-fidelity tactile data. To mitigate this issue, we propose KineDex, a
hand-over-hand kinesthetic teaching paradigm in which the operator’s motion is
directly transferred to the dexterous hand, enabling the collection of physically
grounded demonstrations enriched with accurate tactile feedback. To resolve oc-
clusions from human hand, we apply inpainting technique to preprocess the visual
observations. Based on these demonstrations, we then train a visuomotor policy
using tactile-augmented inputs and implement force control during deployment
for precise contact-rich manipulation. We evaluate KineDex on a suite of chal-
lenging contact-rich manipulation tasks, including particularly difficult scenarios
such as squeezing toothpaste onto a toothbrush, which require precise multi-finger
coordination and stable force regulation. Across these tasks, KineDex achieves an
average success rate of 74.4%, representing a 57.7% improvement over the variant
without force control. Comparative experiments with teleoperation and user stud-
ies further validate the advantages of KineDex in data collection efficiency and
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operability. Specifically, KineDex collects data over twice as fast as teleoperation
across two tasks of varying difficulty, while maintaining a near-100% success rate,
compared to under 50% for teleoperation.
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1 Introduction

Integrating tactile sensing with dexterous hands substantially improves robotic manipulation capa-
bilities [1, 2, 3, 4], paving the way for broader deployment in daily scenarios. Despite notable
advances in recent years, particularly in hardware offering increased flexibility [5, 6, 7, 8] and im-
proved tactile sensor precision [9, 10, 11, 12], acquiring expert-level demonstrations that incorporate
high-fidelity tactile sensing remains a fundamental challenge.

Most existing demonstration collection methods focus on human hand motion retargeting. A
common approach is teleoperation [13, 14, 15, 16, 17, 18], which captures the demonstrator’s
hand trajectories using a virtual reality headset or data gloves and maps them to robotic hands.
Another line of work directly leverages egocentric videos to infer corresponding robot mo-
tions [19, 20, 21, 22, 23]. However, these methods face limitations when applied to complex ma-
nipulation tasks. First, the retargeted trajectories often fail to accurately reproduce human behavior
due to the kinematic mismatch between human and robotic hands. Second, the absence of on-robot
tactile feedback during teleoperation makes task performance highly dependent on the operator’s ex-
pertise. To alleviate this issue, recent work has introduced exoskeleton-based systems that provide
real-time haptic feedback as a proxy for touch [24, 25]. However, the interaction experience still
differs notably from direct physical contact, and the data collection efficiency remains comparable
to that of traditional teleoperation.

Motivated by recent advances in the biomimetic design of dexterous hands [26], we propose
KineDex, a framework for collecting tactile-enriched demonstrations through hand-over-hand guid-
ance. This paradigm offers several key advantages: (i) human motions can be directly applied to the
robotic hand, eliminating retargeting errors; (ii) operators receive precise force feedback, enabling
the collection of high-quality tactile data; (iii) data collection efficiency approaches that of direct
human execution; and (iv) the framework naturally extends to more complex hardware and chal-
lenging contact-rich dexterous manipulation tasks, addressing limitations of previous kinesthetic
teaching setups [27, 28, 29].

Building upon the tactile-enriched kinesthetic demonstrations, we further leverage them for visuo-
motor policy training. However, this remains challenging due to the domain shift introduced by the
presence of the human hand in collected visual observations during training, but absent at inference
time. To address this, we apply inpainting techniques [30] to remove occlusions, providing a more
scalable and efficient alternative to prior trajectory replay-based methods [28]. To better perform
contact-rich manipulation, we incorporate tactile sensing to enrich the policy inputs. Moreover, the
policy is trained to predict target fingertip forces alongside target joint positions, which we refer to
as force-informed actions, enabling KineDex to achieve accurate force control during execution.

We conduct extensive experiments on nine contact-rich manipulation tasks, as illustrated in Fig-
ure 1. KineDex demonstrates robust and precise control, achieving an average success rate of 74.4%
across all tasks and outperforming the variant without force control by 57.7%. In addition, we find
that tactile sensing is particularly important for contact-intensive tasks such as Cap Twisting, Tooth-
paste Squeezing, and Syringe Pressing. Experimental results show that KineDex outperforms the
variant without tactile sensing by 26.7% on these tasks. We conduct comparative experiments with
teleoperation to further assess the efficiency of KineDex. The results show that KineDex achieves
more than twice the data collection speed across two tasks of varying difficulty, while maintaining
a success rate close to 100%. In contrast, teleoperation yields an average success rate below 50%
and requires significantly more time to collect the same amount of data. User study feedback addi-
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tionally confirms the advantages of KineDex over teleoperation, with participants reporting a more
intuitive and efficient experience when using kinesthetic teaching.

In summary, we present KineDex, a framework for dexterous manipulation that integrates kines-
thetic data collection with tactile-informed visuomotor policy training. Through empirical evalua-
tions and user studies, we demonstrate that kinesthetic teaching provides a more effective and ef-
ficient alternative to teleoperation for collecting high-quality demonstrations with dexterous hands.
Furthermore, by leveraging tactile-augmented demonstrations, we train a tactile-informed policy
that incorporates force control during inference, enabling successful execution across nine distinct
contact-rich manipulation tasks.

2 Related Work

2.1 Collecting Demonstrations with Dexterous Hands

Most existing methods for collecting demonstrations with dexterous hands rely on retargeting human
hand motion via teleoperation [31, 32, 33, 34, 35] or using video data [19, 20, 21, 22, 23]. How-
ever, both approaches share a key limitation: the operator lacks real-time tactile feedback, adversely
impacting the efficiency and success rate of data collection. To mitigate this, some studies have
introduced exoskeleton systems [36, 24, 25] that simulate haptic feedback during interaction. Nev-
ertheless, such approximations differ fundamentally from the actual tactile sensations experienced
through direct physical contact.

Kinesthetic teaching [37, 29, 38, 39, 28] enables operators to physically manipulate the robotic
hardware and receive real-time force feedback. HIRO [39] introduces a hand-over-hand teaching
paradigm, where the demonstrator grasps the robotic hand to experience accurate force feedback,
but does not record tactile data, limiting its applicability to complex tasks. The most closely related
work to ours is DexForce [28], which collects tactile-augmented demonstrations via kinesthetic
teaching but relies on simpler hardware with fewer degrees of freedom and evaluates only on basic
tasks such as grasping or flipping. Moreover, due to visual occlusions from the demonstrator’s hand,
DexForce requires replaying kinesthetic trajectories to obtain clean observations—a process that
becomes infeasible for longer-horizon tasks.

2.2 Learning Dexterous Manipulation from Human Demonstrations

Learning from expert human demonstrations [40, 41, 42, 43, 44, 45] enables embodied agents to
acquire autonomous manipulation skills. Diffusion Policy [44], which applies diffusion models to
imitation learning, has shown strong capability in capturing the multimodal structure of demon-
stration data. Extensions such as 3D Diffusion Policy [45] integrate point cloud information into
the perception pipeline, allowing for richer environmental representations. Other works have ex-
plored the integration of tactile sensing [46, 47, 48], enabling policies to perform more fine-grained
manipulation. In our work, we adopt Diffusion Policy as the backbone for policy learning, augment-
ing its observation space with tactile sensing and applying force control during inference to ensure
precision and stability in contact-rich manipulation tasks.

3 Method

3.1 Problem Formulation

In this work, we aim to train tactile-informed visuomotor policies from kinesthetic demonstrations
via imitation learning, and to implement force control at inference time for executing contact-rich
manipulation tasks. The observation space and learning targets are defined as follows.

Observation Space. At each time step t, the policy receives multi-modal observations comprising:
(i) RGB images captured from No multi-view cameras, denoted as ot ∈ RNo×H×W×3; (ii) tactile
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Figure 2: Overview of the KineDex framework. KineDex collects tactile-enriched demonstrations
via kinesthetic teaching, where visual occlusions from the operator’s hand are removed through
inpainting before policy training. The learned policy takes visual and tactile inputs to predict joint
positions and contact forces, which are executed with force control for robust manipulation.

vectors obtained from Nq sensing points on each of the five fingertips, represented as qt ∈ R5×Nq ;
(iii) proprioceptive signals from Nx joints of the robotic hardware, given by xt ∈ RNx .

Action Space. To enable precise force control during inference, the policy predicts not only the
target joint positions xd ∈ RNx , but also the Nf -dimensional target fingertip forces fd ∈ R5×Nf ,
resulting in a force-informed action denoted by at = {xd, fd}. While xd specifies the baseline
configuration of the hand, fd modulates the contact forces via a modified PD controller (introduced
in Section 3.4), allowing the fingers to actively track the desired contact forces during execution.

3.2 Kinesthetic Data Collection

The general hardware setup of KineDex consists of a robotic arm equipped with a dexterous hand,
as illustrated in Figure 1. In addition, we employ two RGB cameras to capture visual observations:
one is mounted in front of the workspace to provide a global view of the scene, and the other is
wrist-mounted on the end-effector to enable close-range perception of the manipulation area.

The core idea of KineDex data collection system is to allow operators to “wear” the dexterous hand
while moving freely to perform precise contact-rich manipulation in real time. To enable this hand-
over-hand control, we attach ring-shaped straps to the dorsal sides of the four non-thumb fingers
of the robotic hand, allowing the operator to guide the hand as if wearing a glove. This physical
coupling ensures that contact forces experienced during motion are immediately transmitted to the
operator’s hand, providing natural haptic feedback throughout the demonstration. Due to morpho-
logical differences between human and robotic hands, the operator controls the thumb separately
with their left hand, while guiding the remaining fingers with their right hand as described above.
Examples of kinesthetic demonstrations are shown in Figure 4.

During kinesthetic teaching, the following data modalities are recorded for each demonstration:

• Visual observations: RGB images captured from the front-facing and wrist-mounted cameras.
As raw observations may contain the operator’s body, we apply an inpainting strategy to address
this issue, as detailed in Section 3.3.

• Proprioception: The robot arm’s end-effector pose and the dexterous hand’s joint positions.

• Tactile sensing: Per-finger tactile measurements, with each finger equipped with multiple sensing
points that record localized contact forces, forming a dense tactile sensing matrix.

• Fingertip force: A 3D force vector f = (fx, fy, fz) for each fingertip, where each component
represents the force along the corresponding axis, computed by aggregating the localized forces
from all tactile sensing points.
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3.3 Policy Learning

The raw kinesthetic demonstrations collected by the system cannot be directly used for visuomotor
policy learning, as the front-facing camera inevitably captures the operator’s body during interaction.
Training on such data introduces a significant out-of-distribution(OOD) shift at inference time, when
the human body is no longer present in the scene (as shown in Table 1). Motivated by recent
advances in human-to-robot data editing [49, 50], we adopt an inpainting-based approach to remove
the operator’s body from the visual observations.

For raw kinesthetic demonstrations, we first apply Grounded-SAM [51] to extract masks of the op-
erator’s body parts from the video frames. These frames, along with their corresponding masks, are
then passed to the ProPainter [30] model to inpaint the occluded human body regions. An example
of the data preprocessing pipeline is illustrated in Figure 2. Although the inpainting model is not
pretrained on robot-specific data and may not achieve perfect removal, our experiments demonstrate
that the resulting demonstrations are sufficient for training high-performance policies.

Using the preprocessed demonstrations, we train Diffusion Policy [44] conditioned on inpainted
visual observations, tactile sensing, and proprioception to predict force-informed actions, modeled
as p(xd, fd | ot, qt, xt). Specifically, for the calculated fingertip force vector f = (fx, fy, fz), we
supervise policy training using the normal force component fz , which corresponds to the primary
axis along which the fingertip can actively exert force, as illustrated in Figure 2.

At inference time, the policy produces action chunks [52] to enable smoother control. Each chunk
specifies the desired joint positions and fingertip contact forces, which are executed using the force
control strategy described below. Further details of the network architecture and policy training
configurations are provided in Appendix B.

3.4 Force Control

In conventional setups, robots are typically operated under position control [53], where the control
signal u is computed by a PD controller [54] based on the joint position and velocity errors relative
to the target joint positions xd:

u = Kp(xd − x) +Kd(ẋd − ẋ), (1)
where Kp and Kd denote the proportional and derivative gains, respectively.

However, relying solely on position control may be insufficient for certain precise, contact-rich
tasks, such as cap twisting or toothpaste squeezing. This is due to policies that only track target joint
positions results in merely contacting the object’s surface without applying meaningful forces, as
the recorded fingertip positions remain unchanged regardless of the forces applied during kinesthetic
teaching. This discrepancy often leads to unstable grasps, slipping, or ineffective manipulation.

To address this limitation, we exploit the following physical property: when a fingertip contacts an
object, any nonzero position error continuously generates pressure against the surface due to the
object’s resistance, with larger errors producing greater forces, as if the target position lies inside the
object. We refer to this virtual displacement as the force-informed target position. To compute it,
we utilize the predicted fingertip forces fd from the trained policy, which are directed orthogonal to
the contact surface and align with the primary motion axis of the finger joints. Specifically, for each
finger, let xtip and xbase denote the current positions of the fingertip and base joints, respectively.
The force-informed target positions, xtip

d and xbase
d , are then computed as:{

xtip
d = xtip +Ktip · fd

xbase
d = xbase +Kbase · fd

(2)

Here, Ktip and Kbase are two hyperparameters that determine the motion stiffness at the fingertip
and base joints. They are tuned to ensure that the execution faithfully tracks the predicted forces and
are kept fixed across different tasks. With this force control strategy, KineDex can precisely track the
target fingertip forces predicted by the trained policy, thereby achieving stable and force-informed
control during execution.

5



Table 1: Number of successful trials (out of 20) during inference for different methods.
Method Bottle Picking Cup Picking Egg Picking Cap Twisting Nut Tightening

KineDex 17 20 17 15 16
w/o Force Control 0 16 5 2 7
w/o Tactile Input 15 17 18 10 12
w/o Inpainting 0 0 0 0 0

Method Peg Insertion Charger Plugging Toothpaste Squeezing Syringe Pressing

KineDex 15 12 9 13
w/o Force Control 0 0 0 0
w/o Tactile Input 16 10 3 8
w/o Inpainting 0 0 0 0
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Figure 3: Visualization of predicted and sensed forces at the thumb during task execution, comparing
the force-informed policy and the variant without force control.

4 Experiments

In this section, we investigate the effectiveness of kinesthetic demonstrations for training visuomotor
policies across a range of contact-rich dexterous manipulation tasks. We further evaluate the effi-
ciency and practicality of kinesthetic teaching through comparative experiments and a user study,
highlighting its advantages over teleoperation-based approaches.

To this end, we design a suite of nine tasks that emphasize precise force control, multi-finger coordi-
nation, and interaction with everyday objects. These tasks span a range of dexterous skills, including
challenging scenarios such as squeezing toothpaste onto a toothbrush, which requires continuous
and fine-grained pressure modulation; and pressing a syringe, which demands stable unimanual ac-
tuation and a coordinated grip to prevent slippage or misalignment. Detailed task descriptions are
provided in Appendix A.

4.1 Performance Evaluation

Hardware Setup. For this set of experiments, we implement KineDex using a Franka Emika Panda
robotic arm equipped with a Robotera XHand13 dexterous hand. Each finger on the XHand1 has
two joints, while the thumb and index finger include an additional rotational joint, resulting in a total
of 12 degrees of freedom. Each finger is equipped with 120 tactile sensing points.

Baselines. We compare KineDex against three ablated variants: (i) w/o Force Control, which dis-
ables force control during inference while keeping the training setup unchanged. (ii) w/o Tactile
Input, which removes tactile sensing from the policy inputs during training; however, the policy still
predicts target fingertip forces, which are executed using the same force control strategy. (iii) w/o
Inpainting, which omits the inpainting preprocessing step for kinesthetic demonstrations.

We evaluate performance by conducting 20 trials per task, with results summarized in Table 1.
KineDex achieves over 70% success rates on most tasks, and nearly 100% on common pick-and-
place scenarios such as Bottle Picking and Cup Picking. While performance is slightly lower on the

3https://www.robotera.com/goods/2.html
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Table 2: Number of successful trials (out of 20) during data collection for different methods.
Method Bottle Picking Cup Picking Cap Twisting Charger Plugging Syringe Pressing

KineDex 20 20 20 18 20
Teleoperation 19 9 7 0 4

K
ineD

ex
Teleop

0.0 s 2.8 s 5.6 s 8.3 s 11.1s 14.0 s

0.0 s 0.8 s 1.6 s 2.4 s 3.2 s 4.0 s

K
ineD

ex
Teleop

0.0 s

0.0 s

2.0 s 4.0 s 6.0 s 8.0 s 10.0 s

4.0 s 8.0 s 12.0 s 16.0 s 20.0 s

Figure 4: Comparison of demonstration collection time between KineDex and teleoperation on the
Bottle Picking and Syringe Pressing.

final three, more challenging tasks, the average success rates still exceed 50%. This drop is likely
due to the increased demands for fine-grained localization and contact reasoning, which may ex-
ceed the representational capacity of the current policy inputs. Despite these challenges, the results
demonstrate that kinesthetic demonstrations effectively support visuomotor policy learning across a
wide range of daily manipulation tasks, owing to their natural alignment with human behavior and
the availability of accurate tactile and force feedback.

The ablation results without force control underscore the importance of incorporating both force
measurements during training and force control during inference. In this setting, the average success
rate across all tasks drops to just 16.7%, with even simple tasks such as Bottle Picking rarely com-
pleted successfully. Without force control, the robotic hand often merely contacts the object surface
without applying sufficient pressure, leading to frequent failures in contact-rich tasks. To further ex-
amine this effect, Figure 3 visualizes the fingertip-object contact forces during inference. KineDex
accurately tracks the desired contact forces predicted by the policy, exhibiting similar magnitudes
and temporal patterns. In contrast, without force control, the executed force remains flat and fails to
follow the predicted targets, indicating a breakdown in physical interaction quality.

When the policy is trained without tactile input, performance exhibits a moderate drop on most
relatively simple pick-and-place tasks. This outcome is expected, as visual information alone is often
sufficient to estimate required forces in many scenarios. However, for more contact-intensive tasks
such as Cap Twisting, Toothpaste Squeezing, and Syringe Pressing, removing tactile input leads to a
significant performance decline, with average success rates decreasing by 26.7%. This suggests that
in scenarios with severe visual occlusion or tasks heavily reliant on contact feedback, tactile sensing
serves as an effective auxiliary modality that substantially improves task success.

The variant without inpainting yields a zero success rate across all tasks and exhibits unreasonable
behaviors during execution. These results confirm that raw kinesthetic demonstrations are infeasible
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Figure 5: Summary of user study results. Five participants used both the teleoperation system and
KineDex to collect demonstrations. Pie charts summarize their feedback on key evaluation criteria.

for direct policy training due to out-of-distribution visual observations, and that inpainting provides
an effective strategy for mitigating this issue.

4.2 Efficiency Evaluation

We further validate the advantages of KineDex over teleoperation for data collection through com-
parative experiments. We replicate the Open-TeleVision [15] setup to construct a teleoperation sys-
tem using a Franka Emika Panda arm equipped with an Inspire Hand4, and track the operator’s hand
motion using the Meta Quest 3 headset5. To ensure a fair comparison, we implement KineDex using
the same Inspire Hand in this set of experiments. Detailed setup is provided in Appendix C.1.

We evaluate five tasks that are feasible under teleoperation and report the demonstration success rates
during data collection. As shown in Table 2, teleoperation achieves an average success rate of 39%,
whereas KineDex consistently achieves near-perfect success across all tasks. The absence of real-
time tactile feedback significantly impairs teleoperation performance, particularly in tasks such as
Cup Picking, where the operator frequently crushes the paper cup due to excessive force. Moreover,
because the operator views the scene through a remote camera in the VR interface, the resulting
unnatural visual feedback introduces additional challenges, especially for fine-grained manipulation
such as Syringe Pressing. These results suggest that teleoperation requires greater operator expertise
and repeated trial-and-error to produce high-quality demonstrations, leading to significantly lower
data collection efficiency compared to KineDex.

In addition to success rates, we also measure the time required to collect demonstrations with both
methods. As shown in Figure 4, the improvement in efficiency is substantial: on the complex task
of Syringe Pressing, KineDex completes each demonstration in roughly half the time required by
teleoperation; on the simpler task of Bottle Picking, it takes less than one-third of the time. This
efficiency gap is primarily due to the additional time required for the operator to adjust to precise
hand poses, as well as the inherent latency and limited responsiveness of the teleoperation system.

4.3 User Study

To provide a more comprehensive evaluation of KineDex, we conduct a user study using the setup
described in Appendix C.2. Participants used both KineDex and the teleoperation system, and subse-
quently provided feedback on their perceived effectiveness and ease of use. The results, summarized
in Figure 5, indicate that KineDex outperforms teleoperation across all evaluation criteria. Specifi-
cally, all participants agreed that KineDex enables more accurate tactile data collection and is better
suited for complex manipulation tasks, while most found it easier to use than teleoperation.

4https://www.inspire-robots.com/product/frwz/
5https://www.meta.com/quest/quest-3/
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5 Conclusion

We present KineDex, a framework for collecting tactile-enriched demonstrations and training visuo-
motor policies for dexterous manipulation. Through experiments on nine contact-rich manipulation
tasks, we demonstrate the feasibility of kinesthetic teaching for data collection, and highlight the
critical roles of tactile sensing and force control in addressing complex manipulation challenges.
Comparative studies with teleoperation further reveal that our approach offers substantial advan-
tages in both data collection efficiency and user experience. We hope that KineDex provides a new
perspective for future research on scalable and effective data collection for dexterous robotic hands.

6 Limitations

Based on experimental results and user study feedback, we summarize the limitations of KineDex
as follows. We view these limitations as promising directions for future work and hope they inspire
further advancements in subsequent research:

• Although our results show that inpainting occluded regions is sufficient for training visuomotor
policies, its effectiveness may degrade under more severe occlusions. This issue could potentially
be mitigated by fine-tuning the inpainting model on robot-specific data.

• The current setup requires two human hands to control a single dexterous hand due to the mor-
phological mismatch between the robotic and human thumbs, limiting scalability for bimanual
demonstrations. Future work could explore more biomimetic hardware designs to enable single-
handed kinesthetic teaching.

References
[1] Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, and X. Wang. Rotating without seeing: Towards in-hand

dexterity through touch, Mar. 2023.

[2] H. Qi, B. Yi, S. Suresh, M. Lambeta, Y. Ma, R. Calandra, and J. Malik. General in-hand object
rotation with vision and touch, Sept. 2023.

[3] H. Zhang, Z. Wu, L. Huang, S. Christen, and J. Song. Robustdexgrasp: Robust dexterous
grasping of general objects from single-view perception, 2025. URL https://arxiv.org/
abs/2504.05287.

[4] H. Lee, Y. Kim, V. M. Staven, and C. Sloth. Trajectory optimization for in-hand manipulation
with tactile force control, 2025. URL https://arxiv.org/abs/2503.08222.

[5] K. Shaw, A. Agarwal, and D. Pathak. Leap hand: Low-cost, efficient, and anthropomorphic
hand for robot learning, Sept. 2023.

[6] K. Shaw and D. Pathak. Leap hand v2: Dexterous, low-cost anthropomorphic hybrid rigid soft
hand for robot learning. In 2nd Workshop on Dexterous Manipulation: Design, Perception and
Control (RSS), 2024.

[7] C. C. Christoph, M. Eberlein, F. Katsimalis, A. Roberti, A. Sympetheros, M. R. Vogt, D. Li-
conti, C. Yang, B. G. Cangan, R. J. Hinchet, and R. K. Katzschmann. Orca: An open-source,
reliable, cost-effective, anthropomorphic robotic hand for uninterrupted dexterous task learn-
ing, Apr. 2025.

[8] B. Romero, H.-S. Fang, P. Agrawal, and E. Adelson. Eyesight hand: Design of a fully-actuated
dexterous robot hand with integrated vision-based tactile sensors and compliant actuation, Aug.
2024.

[9] R. Bhirangi, V. Pattabiraman, E. Erciyes, Y. Cao, T. Hellebrekers, and L. Pinto. Anyskin:
Plug-and-play skin sensing for robotic touch. arXiv preprint arXiv:2409.08276, 2024.

9

https://arxiv.org/abs/2504.05287
https://arxiv.org/abs/2504.05287
https://arxiv.org/abs/2503.08222


[10] C. Lin, Z. Lin, S. Wang, and H. Xu. Dtact: A vision-based tactile sensor that measures high-
resolution 3d geometry directly from darkness, Sept. 2022.

[11] J. Xu, L. Wu, C. Lin, D. Zhao, and H. Xu. Dtactive: A vision-based tactile sensor with active
surface, Oct. 2024.

[12] S. Wang, Y. She, B. Romero, and E. Adelson. Gelsight wedge: Measuring high-resolution 3d
contact geometry with a compact robot finger, June 2021.

[13] M. Gallipoli, S. Buonocore, M. Selvaggio, G. A. Fontanelli, S. Grazioso, and G. Di Giron-
imo. A virtual reality-based dual-mode robot teleoperation architecture. Robotica, 42(6):
1935–1958, June 2024. ISSN 0263-5747, 1469-8668. doi:10.1017/S0263574724000663.

[14] C. Wang, H. Shi, W. Wang, R. Zhang, L. Fei-Fei, and C. K. Liu. Dexcap: Scalable and portable
mocap data collection system for dexterous manipulation, July 2024.

[15] X. Cheng, J. Li, S. Yang, G. Yang, and X. Wang. Open-television: Teleoperation with immer-
sive active visual feedback, July 2024.

[16] Z. Si, K. L. Zhang, Z. Temel, and O. Kroemer. Tilde: Teleoperation for dexterous in-hand
manipulation learning with a deltahand, Aug. 2024.

[17] P. Wu, Y. Shentu, Z. Yi, X. Lin, and P. Abbeel. Gello: A general, low-cost, and intuitive
teleoperation framework for robot manipulators, July 2024.

[18] K. Shaw, S. Bahl, and D. Pathak. Videodex: Learning dexterity from internet videos. In
Proceedings of The 6th Conference on Robot Learning, pages 654–665. PMLR, Mar. 2023.

[19] H. G. Singh, A. Loquercio, C. Sferrazza, J. Wu, H. Qi, P. Abbeel, and J. Malik. Hand-object
interaction pretraining from videos, Sept. 2024.

[20] I. Guzey, Y. Dai, G. Savva, R. Bhirangi, and L. Pinto. Bridging the human to robot dexterity
gap through object-oriented rewards, Oct. 2024.

[21] J. Li, Y. Zhu, Y. Xie, Z. Jiang, M. Seo, G. Pavlakos, and Y. Zhu. Okami: Teaching humanoid
robots manipulation skills through single video imitation, Oct. 2024.

[22] Z. Chen, S. Chen, E. Arlaud, I. Laptev, and C. Schmid. Vividex: Learning vision-based dex-
terous manipulation from human videos, Sept. 2024.

[23] J. Li, Y. Zhu, Y. Xie, Z. Jiang, M. Seo, G. Pavlakos, and Y. Zhu. Okami: Teaching humanoid
robots manipulation skills through single video imitation, 2024. URL https://arxiv.org/
abs/2410.11792.

[24] H. Xu, M. Chen, G. Li, L. Wei, S. Peng, H. Xu, and Q. Li. An immersive virtual reality
bimanual telerobotic system with haptic feedback, Jan. 2025.

[25] H. Zhang, S. Hu, Z. Yuan, and H. Xu. Doglove: Dexterous manipulation with a low-cost
open-source haptic force feedback glove, Feb. 2025.

[26] C. Piazza, G. Grioli, M. G. Catalano, and A. Bicchi. A century of robotic hands. Annual
Review of Control, Robotics, and Autonomous Systems, 2(1):1–32, 2019.

[27] U. Yoo, J. Francis, J. Oh, and J. Ichnowski. Kinesoft: Learning proprioceptive manipulation
policies with soft robot hands, Mar. 2025.

[28] C. Chen, Z. Yu, H. Choi, M. Cutkosky, and J. Bohg. Dexforce: Extracting force-informed
actions from kinesthetic demonstrations for dexterous manipulation, Jan. 2025.

[29] W. Liu, J. Wang, Y. Wang, W. Wang, and C. Lu. Forcemimic: Force-centric imitation learning
with force-motion capture system for contact-rich manipulation, Oct. 2024.

10

http://dx.doi.org/10.1017/S0263574724000663
https://arxiv.org/abs/2410.11792
https://arxiv.org/abs/2410.11792


[30] S. Zhou, C. Li, K. C. K. Chan, and C. C. Loy. Propainter: Improving propagation and trans-
former for video inpainting, Sept. 2023.

[31] Y. Qin, W. Yang, B. Huang, K. V. Wyk, H. Su, X. Wang, Y.-W. Chao, and D. Fox. Anyteleop:
A general vision-based dexterous robot arm-hand teleoperation system, May 2024.

[32] A. Handa, K. V. Wyk, W. Yang, J. Liang, Y.-W. Chao, Q. Wan, S. Birchfield, N. Ratliff, and
D. Fox. Dexpilot: Vision based teleoperation of dexterous robotic hand-arm system, Oct. 2019.

[33] A. Iyer, Z. Peng, Y. Dai, I. Guzey, S. Haldar, S. Chintala, and L. Pinto. Open teach: A versatile
teleoperation system for robotic manipulation, Mar. 2024.

[34] S. P. Arunachalam, I. Güzey, S. Chintala, and L. Pinto. Holo-dex: Teaching dexterity with
immersive mixed reality, Oct. 2022.

[35] R. Ding, Y. Qin, J. Zhu, C. Jia, S. Yang, R. Yang, X. Qi, and X. Wang. Bunny-visionpro: Real-
time bimanual dexterous teleoperation for imitation learning, 2024. URL https://arxiv.
org/abs/2407.03162.

[36] X. Chao, S. Mu, Y. Liu, S. Li, C. Lyu, X.-P. Zhang, and W. Ding. Exo-viha: A cross-platform
exoskeleton system with visual and haptic feedback for efficient dexterous skill learning, Mar.
2025.

[37] Y. Hou, Z. Liu, C. Chi, E. Cousineau, N. Kuppuswamy, S. Feng, B. Burchfiel, and S. Song.
Adaptive compliance policy: Learning approximate compliance for diffusion guided control,
Oct. 2024.

[38] T. Ablett, O. Limoyo, A. Sigal, A. Jilani, J. Kelly, K. Siddiqi, F. Hogan, and G. Dudek.
Multimodal and force-matched imitation learning with a see-through visuotactile sensor.
IEEE Transactions on Robotics, 41:946–959, 2025. ISSN 1552-3098, 1941-0468. doi:
10.1109/TRO.2024.3521864.

[39] D. Wei and H. Xu. A wearable robotic hand for hand-over-hand imitation learning, Sept. 2023.

[40] A. Mandlekar, D. Xu, R. Martín-Martín, S. Savarese, and L. Fei-Fei. Learning to generalize
across long-horizon tasks from human demonstrations, June 2021.

[41] M. Chang and S. Gupta. One-shot visual imitation via attributed waypoints and demonstration
augmentation, 2023. URL https://arxiv.org/abs/2302.04856.

[42] T. Yu, P. Abbeel, S. Levine, and C. Finn. One-shot composition of vision-based skills from
demonstration. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2643–2650. IEEE, 2019.

[43] E. Johns. Coarse-to-fine imitation learning: Robot manipulation from a single demonstration,
2021. URL https://arxiv.org/abs/2105.06411.

[44] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion, Mar. 2024.

[45] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu. 3d diffusion policy: Generalizable
visuomotor policy learning via simple 3d representations, June 2024.

[46] Z. Sun, Z. Shi, J. Chen, Q. Liu, Y. Cui, Q. Ye, and J. Chen. Vtao-bimanip: Masked visual-
tactile-action pre-training with object understanding for bimanual dexterous manipulation, Jan.
2025.

[47] I. Guzey, B. Evans, S. Chintala, and L. Pinto. Dexterity from touch: Self-supervised pre-
training of tactile representations with robotic play, Mar. 2023.

11

https://arxiv.org/abs/2407.03162
https://arxiv.org/abs/2407.03162
http://dx.doi.org/10.1109/TRO.2024.3521864
http://dx.doi.org/10.1109/TRO.2024.3521864
https://arxiv.org/abs/2302.04856
https://arxiv.org/abs/2105.06411


[48] I. Guzey, Y. Dai, B. Evans, S. Chintala, and L. Pinto. See to touch: Learning tactile dexterity
through visual incentives, Sept. 2023.

[49] L. Y. Chen, C. Xu, K. Dharmarajan, M. Z. Irshad, R. Cheng, K. Keutzer, M. Tomizuka,
Q. Vuong, and K. Goldberg. Rovi-aug: Robot and viewpoint augmentation for cross-
embodiment robot learning, Sept. 2024.

[50] M. Lepert, J. Fang, and J. Bohg. Phantom: Training robots without robots using only human
videos, 2025. URL https://arxiv.org/abs/2503.00779.

[51] T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen, X. Huang, Y. Chen, F. Yan, Z. Zeng,
H. Zhang, F. Li, J. Yang, H. Li, Q. Jiang, and L. Zhang. Grounded sam: Assembling open-
world models for diverse visual tasks, Jan. 2024.

[52] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware, Apr. 2023.

[53] B. Siciliano, O. Khatib, and T. Kröger. Springer handbook of robotics, volume 200. Springer,
2008.

[54] M. A. Johnson and M. H. Moradi. PID control. Springer, 2005.

[55] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux, O. Stasse, and N. Mansard.
The pinocchio c++ library: A fast and flexible implementation of rigid body dynamics algo-
rithms and their analytical derivatives. In 2019 IEEE/SICE International Symposium on System
Integration (SII), pages 614–619. IEEE, 2019.

[56] J. Carpentier, F. Valenza, N. Mansard, et al. Pinocchio: fast forward and inverse dynamics for
poly-articulated systems, 2015–2018. URL https://stack-of-tasks. github. io/pinocchio.

12

https://arxiv.org/abs/2503.00779


A Task Design

We design a suite of nine contact-rich dexterous manipulation tasks to comprehensively evaluate
policy performance across diverse interaction modes. In all tasks, object poses are randomized to
introduce variability in spatial configurations and contact conditions. The tasks are as follows:

• Bottle Picking: Pick up a partially filled plastic water bottle (approximately 200g), transport it to
a designated target location, and place it without dropping. This task requires stable control over
a compliant object with shifting internal mass.

• Cup Picking: Pick up a disposable paper cup, transport it stably, and place it at a specified loca-
tion. The task emphasizes gentle contact and manipulation of deformable, lightweight objects.

• Egg Picking: Pick up a raw egg, move it to a target location, and place it safely. This task
demands extremely fine force modulation to prevent cracking or dropping during manipulation.

• Cap Twisting: Grasp a plastic bottle, unscrew the cap, and lift it off. This task involves precise
torque generation, in-hand stabilization, and coordinated finger-thumb rotation.

• Nut Tightening: Rotate a plastic nut clockwise to securely fasten it onto a bolt. The task requires
simultaneous rotational motion and downward force application.

• Peg Insertion: Insert four wooden pegs into corresponding holes on a board. This evaluates
spatial alignment, contact control, and force-guided insertion under tight tolerances.

• Charger Plugging: Plug a two-prong charger into a power strip, requiring fine spatial alignment
and precise force control to achieve successful insertion.

• Toothpaste Squeezing: Flip open the toothpaste cap using the thumb, then squeeze paste onto a
toothbrush. The task combines sequential action planning and fine-grained variable force modu-
lation.

• Syringe Pressing: Hold a syringe and press the plunger with the thumb to expel water. This
simulates a one-handed, force-controlled manipulation requiring steady actuation and grasp sta-
bility.

To provide a more intuitive understanding of the tasks, we visualize the execution of the trained
policies for all nine contact-rich manipulation tasks in Figure 9. Note that the execution times
annotated in the figure may differ from those shown in Figure 4, as the policies are trained with
different sets of demonstrations.

B Policy Training Details

Our policy implementation builds upon the official Diffusion Policy codebase6. We retain the orig-
inal architecture of the U-Net-based diffusion model and the multi-view visual encoder without
modifications. However, to better support our contact-rich manipulation setting, we introduce the
following enhancements:

• We integrate a tactile encoder to process high-resolution tactile inputs from five fingers. The
input is a tensor of shape 5x120x3, where each of the five fingers has 120 tactile points, and
each point encodes a 3D vector representing the magnitude and direction of contact force. Each
finger’s data is processed through a shared 1D convolutional encoder to extract per-finger fea-
tures. These features are then concatenated and passed through a two-layer multilayer percep-
tron (MLP) to produce a fixed-length tactile embedding. This embedding is fused with visual
and proprioceptive observations to form the policy input.

• Our policy outputs a 23-dimensional action vector, comprising 6 degrees of freedom for the end-
effector pose, 12 joint angles for the dexterous hand, and 5 normal force targets at the fingertips.

6https://github.com/real-stanford/diffusion_policy
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To improve control smoothness and temporal consistency, we adopt an action chunking strat-
egy [52] with a chunk length of 16. During execution, we employ an interpolation controller
that applies control commands at 100 Hz for the robotic arm and 50 Hz for the dexterous hand,
ensuring high-frequency and stable control for both subsystems.

• For relatively simple tasks such as picking, plugging, and insertion, we collect approximately 100
demonstrations per task. For more challenging tasks such as toothpaste squeezing and syringe
pressing, we collect around 150 demonstrations. All baselines are trained for 500 epochs on each
task.

Some key hyperparameters for training and inference are summarized in Table 3.
Table 3: Training and inference configuration.

Config Value
Observation horizon 2
Action horizon 16
Observation resolution 240×320
Optimizer AdamW
Optimizer momentum β1, β2 = 0.95, 0.999
Learning rate 1e-4
Batch size 64
Inference denoising iterations 16
Temporal ensemble steps 8
Temporal ensemble adaptation rate -0.01

C Experiment Setup Details

C.1 Teleoperation System Setup

We replicate the Open-TeleVision [15] setup and construct a single-handed teleoperation system for
comparative evaluation. Our setup consists of the following components:

• Robot Platform: A 7-DoF Franka Emika Panda robotic arm mounted with a 6-DoF Inspire
Hand.

• Operator Interface: A Meta Quest 3 headset is used to track the operator’s head motions in real
time using its built-in hand tracking system.

• Motion Retargeting: The operator’s wrist pose is mapped to the robot arm’s end-effector
via a closed-loop inverse kinematics (CLIK) controller implemented with the Pinocchio li-
brary [55, 56], ensuring stable and precise arm control. Simultaneously, the operator’s hand
keypoints are retargeted to the 12-DoF Inspire Hand using the dex-retargeting framework [31],
which optimizes the alignment between human and robot keypoint vectors while maintaining
temporal consistency. This unified retargeting approach enables intuitive and responsive control
of both the arm and the dexterous hand.

Figure 6: The overview of the teleoperation system setup.
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(a) Kinesthetic Demonstration

(b) Masked Demonstration.

(c) Inpainted Demonstration.

Figure 7: Data preprocessing pipeline for Peg Insertion.

(a) Kinesthetic Demonstration

(b) Masked Demonstration.

(c) Inpainted Demonstration.

Figure 8: Data preprocessing pipeline for Syringe Pressing.

C.2 User Study Setup

We invited five participants with prior experience in robotics projects to take part in the user study.
The participants had varying levels of teleoperation expertise. Each participant was guided to use
both KineDex and our custom-built teleoperation system to collect demonstrations. They completed
five trials on two tasks of different difficulty levels: Bottle Picking and Syringe Pressing. Afterward,
they evaluated both systems in terms of perceived effectiveness and ease of use.

D Data Preprocessing Details

The KineDex data preprocessing pipeline consists of three stages. First, demonstrations are collected
via kinesthetic teaching. Second, we use Grounded-SAM [51] to segment human body regions and
generate corresponding masks. Finally, we use ProPainter [30] to inpaint the occluded areas by
removing the masked regions. Two examples are illustrated in Figures 7 and 8.
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(a) Bottle Picking

(b) Cup Picking

(c) Egg Picking

(d) Cap Twisting

(e) Nut Tightening

(f) Peg Insertion

(g) Charger Plugging

(h) Toothpaste Squeezing

(i) Syringe Pressing

Figure 9: Executions of trained policies on nine contact-rich manipulation tasks.

16


	Introduction
	Related Work
	Collecting Demonstrations with Dexterous Hands
	Learning Dexterous Manipulation from Human Demonstrations

	Method
	Problem Formulation
	Kinesthetic Data Collection
	Policy Learning
	Force Control

	Experiments
	Performance Evaluation
	Efficiency Evaluation
	User Study

	Conclusion
	Limitations
	Task Design
	Policy Training Details
	Experiment Setup Details
	Teleoperation System Setup
	User Study Setup

	Data Preprocessing Details

